Monoidal Model Categories

نویسنده

  • MARK HOVEY
چکیده

A monoidal model category is a model category with a closed monoidal structure which is compatible with the model structure. Given a monoidal model category, we consider the homotopy theory of modules over a given monoid and the homotopy theory of monoids. We make minimal assumptions on our model categories; our results therefore are more general, yet weaker, than the results of [SS97]. In particular, our results apply to the monoidal model category of topological symmetric spectra [HSS98].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derived Algebraic Geometry II: Noncommutative Algebra

1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....

متن کامل

Derived Algebraic Geometry II: Noncommutative Algebra

1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....

متن کامل

Derived Algebraic Geometry II: Noncommutative Algebra

1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....

متن کامل

Derived Algebraic Geometry II: Noncommutative Algebra

1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....

متن کامل

Higher Enrichment: N-fold Operads and Enriched N-categories, Delooping and Weakening

The most familiar example of higher, or vertically iterated enrichment is that in the definition of strict n-category. We begin with strict n-categories based on a general symmetric monoidal category V. Motivation is offered through a comparison of the classical and extended versions of topological quantum field theory. A sequence of categorical types that filter the category of monoidal catego...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998